Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms
 
research article

Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms

Kirchner-Bossi, Nicolas  
•
Porte-Agel, Fernando  
July 1, 2021
Energies

In recent years, wind farm layout optimization (WFLO) has been extendedly developed to address the minimization of turbine wake effects in a wind farm. Considering that increasing the degrees of freedom in the decision space can lead to more efficient solutions in an optimization problem, in this work the WFLO problem that grants total freedom to the wind farm area shape is addressed for the first time. We apply multi-objective optimization with the power output (PO) and the electricity cable length (CL) as objective functions in Horns Rev I (Denmark) via 13 different genetic algorithms: a traditionally used algorithm, a newly developed algorithm, and 11 hybridizations resulted from the two. Turbine wakes and their interactions in the wind farm are computed through the in-house Gaussian wake model. Results show that several of the new algorithms outperform NSGA-II. Length-unconstrained layouts provide up to 5.9% PO improvements against the baseline. When limited to 20 km long, the obtained layouts provide up to 2.4% PO increase and 62% CL decrease. These improvements are respectively 10 and 3 times bigger than previous results obtained with the fixed area. When deriving a localized utility function, the cost of energy is reduced up to 2.7% against the baseline.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

energies-14-04185-v2.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.94 MB

Format

Adobe PDF

Checksum (MD5)

815ab67c90fd4be94175195948981e2e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés