Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Control of Reaction Systems via Rate Estimation and Feedback Linearization
 
conference paper

Control of Reaction Systems via Rate Estimation and Feedback Linearization

Rodrigues, Diogo  
•
Billeter, Julien  
•
Bonvin, Dominique  
2015
Computer Aided Chemical Engineering
25th European Symposium on Computer Aided Process Engineering (ESCAPE) - PSE 2015

<b>Abstract of the conference paper</b><br> The kinetic identification of chemical reaction systems often represents a time-consuming and complex task. This contribution presents an approach that uses rate estimation and feedback linearization to implement effective control without a kinetic model. The reaction rates are estimated by numerical differentiation of reaction variants. The approach is illustrated in simulation through the temperature control of a continuous stirred-tank reactor. <br><br> <b>Extended abstract</b><br> Model identification and controller design are often seen as closely related tasks, since the control law is calculated using the plant model. Previous control approaches based on extensive variables or inventories are examples of this strong dependence on the model [1, 2]. Since the identification of chemical reaction systems can be a time-consuming and complex task, one would ideally like to avoid it as much as possible. The concept of variant and invariant states allows isolating the different rates in chemical reaction systems, thereby facilitating analysis, monitoring and control [3-5]. Using this concept, one can estimate dynamic effects without the need of identifying the corresponding kinetic models. <br><br> This contribution presents a feedback linearization approach that is based on the estimation of unknown rates, such as the rates of reaction and mass transfer, thus allowing efficient control without the use of kinetic models. <br><br> Rate estimation uses the numerical differentiation of appropriately transformed extensive variables called rate variants that are invariant with respect to the manipulated variables. A rate variant contains all the information about the corresponding rate and, as such, is decoupled from the other unknown rates. Since it is possible to estimate the unknown rates this way, the controller does not require kinetic information. However, because of the differentiation step, the controller is most effective with frequent and precise measurements of several output variables. <br><br> Feedback linearization sets a rate of variation for the controlled variables, thereby guaranteeing quick convergence of these variables to their set points. For open chemical reactors, the parameters of the feedback linearization controller are determined by readily available information, such as the reaction stoichiometry, the heats of reaction, the inlet composition or the inlet and outlet flow rates. This novel control strategy is illustrated in simulation for the control of both concentration and temperature in a continuous stirred-tank reactor. <br><br> [1] Georgakis, Chem. Eng. Sci., <b>1986</b>, 41, 1471<br> [2] Farschman et al., AIChE J., <b>1998</b>, 44, 1841<br> [3] Asbjørnsen and Fjeld, Chem. Eng. Sci., <b>1970</b>, 25, 1627<br> [4] Bhatt et al., Ind. Eng. Chem. Res., <b>2011</b>, 50, 12960<br> [5] Srinivasan et al., IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory, Lyon, <b>2013</b>.<br>

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Article Rodrigues et al ESCAPE 2015.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

98.58 KB

Format

Adobe PDF

Checksum (MD5)

27130eec629f103dfdc07a3ec340d3aa

Loading...
Thumbnail Image
Name

Offprint Rodrigues et al. ESCAPE 2015.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

1.55 MB

Format

Adobe PDF

Checksum (MD5)

b3cf3f60a1268b4d95ac5f5cd628442e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés