Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanical behaviour of granular materials undergoing grain dissolution
 
research article

Mechanical behaviour of granular materials undergoing grain dissolution

Kim, Taeheon  
•
Ferrari, Alessio  
•
Laloui, Lyesse  
December 1, 2024
Scientific Reports

Geotechnical engineering projects are often at risk from threats related to mineral dissolution and loss of particles that constitute the matrix of the geomaterial. Moreover, the impact of climate change can exacerbate these risks by accelerating the physical processes. To address such challenges, it is a pre-requisite to understand and quantify the effect of mineral dissolution on geomechanical behaviour. A general theoretical approach to mechanical consequences of geomaterials experiencing mineral dissolution was first proposed. Following, a series of oedometer tests were conducted using mixtures of salt and sand with various salt contents to observe and characterise the effect of dissolution on the mechanical behaviour of granular materials. The dissolution of salt crystals was performed in three different stress states to observe the stress-dependent response of the material. The effect of dissolution was dependent both on the amount of dissolved salt particles and the applied stress state. The laboratory experiments and the discussion followed shares insights into the effect of grain dissolution on the mechanical behaviour of granular materials and proved the potential of the framework presented in this paper. Finally, the paper ends by discussing the engineering implications bearing in mind the climate change we are facing today.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41598-024-72633-3.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.58 MB

Format

Adobe PDF

Checksum (MD5)

89dc307bebb73ded57617aad931bfb1e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés