Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Improved Unknown-Multiple Speaker clustering using HMM
 
report

Improved Unknown-Multiple Speaker clustering using HMM

Ajmera, Jitendra
•
Bourlard, Hervé  
•
Lapidot, I.
2002

In this report, we build up on our previous work on speaker clustering, where the number of speakers and segmentation boundaries are unknown a priori. We employ an ergodic HMM with minimum duration topology for this purpose. Starting from a large number of clusters in the beginning, we merge a pair of clusters in every iteration. A new criterion for the merging of two clusters is proposed, which ensures an increase in likelihood of the data. The merging is done in such a way that, the total number of parameters needed to model all the clusters remain same. Thus, the system finally achieves maximum likelihood (which was not the case in our last work) with the constant number of parameters. The merging process is repeated until there are no candidates available for merging. The efficiency and advantages of using only highly voiced frames was reported in our previous work, and we use the same features for this work. The system was evaluated on Hub-4 1996 evaluation set. Improvements over the previous work are reported and it is shown that, the system converges to right number of clusters in case of limited number of speakers.

  • Details
  • Metrics
Type
report
Author(s)
Ajmera, Jitendra
Bourlard, Hervé  
Lapidot, I.
Date Issued

2002

Publisher

IDIAP

Subjects

speech

•

ajmera

•

bourlard

•

lapidot

URL

URL

http://publications.idiap.ch/downloads/reports/2002/rr02-23.pdf
Written at

EPFL

EPFL units
LIDIAP  
Available on Infoscience
March 10, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/228154
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés