Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Single-Cycle-PLL Detection for Real-Time FM-AFM Applications
 
research article

Single-Cycle-PLL Detection for Real-Time FM-AFM Applications

Schlecker, Benedikt
•
Dukic, Maja  
•
Erickson, Blake  
Show more
2014
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS

In this paper we present a novel architecture for phase-locked loop (PLL) based high-speed demodulation of fre- quency-modulated (FM) atomic force microscopy (AFM) signals. In our approach, we use single-sideband (SSB) frequency upcon- version to translate the AFM signal from the position sensitive detector to a fixed intermediate frequency (IF) of 10 MHz. In this way, we fully benefit from the excellent noise performance of PLL-based FM demodulators still avoiding the intrinsic band- width limitation of such systems. In addition, the upconversion to a fixed IF renders the PLL demodulator independent of the cantilever’s resonance frequency, allowing the system to work with a large range of cantilever frequencies. To investigate if the additional noise introduced by the SSB upconverter degrades the system noise figure we present a model of the AM-to-FM noise conversion in PLLs incorporating a phase-frequency detector. Using this model, we can predict an upper corner frequency for the demodulation bandwidth above which the converted noise from the single-sideband upconverter becomes the dominant noise source and therefore begins to deteriorate the overall system performance. The approach is validated by both electrical and AFM measurements obtained with a PCB-based prototype imple- menting the proposed demodulator architecture.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Single-Cycle-PLL Detection for Real-Time FM-AFM Applications.pdf

Type

Postprint

cris-layout.advanced-attachment.oaire.version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

1.44 MB

Format

Adobe PDF

Checksum (MD5)

0d7c664f830e6ffbb129c19011d9db45

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés