Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. EZ-Flow: Removing Turbulence in IEEE 802.11 Wireless Mesh Networks without Message Passing
 
Loading...
Thumbnail Image
conference paper

EZ-Flow: Removing Turbulence in IEEE 802.11 Wireless Mesh Networks without Message Passing

Aziz, Adel  
•
Starobinski, David
•
Thiran, Patrick  
Show more
2009
ACM CoNEXT'09
ACM CoNEXT 2009

Recent analytical and experimental work demonstrate that IEEE 802.11-based wireless mesh networks are prone to turbulence. Manifestations of such turbulence take the form of large buffer build-up at relay nodes, end-to-end delay fluctuations, and traffic congestion. In this paper, we propose and evaluate a novel, distributed flow-control mechanism to address this problem, called EZ-flow. EZ-flow is fully compatible with the IEEE 802.11 standard (i.e., it does not modify headers in packets), can be implemented using off-the-shelf hardware, and does not entail any communication overhead. EZ-flow operates by adapting the minimum congestion window parameter at each relay node, based on an estimation of the buffer occupancy at its successor node in the mesh. We show how such an estimation can be conducted passively by taking advantage of the broadcast nature of the wireless channel. Real experiments, run on a 9-node testbed deployed over 4 different buildings, show that EZ-flow effectively smoothes traffic and improves delay, throughput, and fairness performance. We further corroborate these results with a mathematical stability analysis and extensive ns-2 simulations run for different traffic workloads and network topologies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

conext20-aziz.pdf

Access type

openaccess

Size

1.47 MB

Format

Adobe PDF

Checksum (MD5)

29f0f51c19cfb361103ba0a6ed4a3f78

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés