High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization
This paper studies kernel ridge regression in high dimensions under covariate shifts and analyzes the role of importance re-weighting. We first derive the asymptotic expansion of high dimensional kernels under covariate shifts. By a bias-variance decomposition, we theoretically demonstrate that the re-weighting strategy allows for decreasing the variance. For bias, we analyze the regularization of the arbitrary or well-chosen scale, showing that the bias can behave very differently under different regularization scales. In our analysis, the bias and variance can be characterized by the spectral decay of a data-dependent regularized kernel: the original kernel matrix associated with an additional re-weighting matrix, and thus the re-weighting strategy can be regarded as a data-dependent regularization for better understanding. Besides, our analysis provides asymptotic expansion of kernel functions/vectors under covariate shift, which has its own interest.
ICLR 2024_high_dimensional_kernel_method.pdf
postprint
openaccess
copyright
623.58 KB
Adobe PDF
44b53bd58fbedbfa1e290c8b517a64fe