Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Surface and bulk reactions in borohydrides and amides
 
research article

Surface and bulk reactions in borohydrides and amides

Borgschulte, Andreas
•
Jones, Martin O.
•
Callini, Elsa  
Show more
2012
Energy & Environmental Science

Complex hydrides such as LiBH4 and LiNH2 exceed the gravimetric hydrogen density of transition metal hydrides by one order of magnitude. However, hydrogen in complex hydrides is covalently bound and arranged in subunits e.g. [NH2]- and [BH4] - with a fixed stoichiometry. Along this line of thought, these compounds can be considered as ordinary ionic compounds. The corresponding pseudo-binary phase diagram comprises a great variety of phases with a high ionic mobility of Li-cations as well as pseudo-anions as measured by diffusion gradients. Using this equilibrium preparation method, we are able to discriminate between stable and meta-stable phases such as Li2BH 4NH2 formed during high-energy ball-milling. We identify Li2BH4NH2 as a mobile intermediate during phase formation. Hydrogen desorption as relevant for their potential use as hydrogen storage does not take place below 200°C as measured by gravimetry. In particular amides, but also borohydrides emit hydrogen, and nitrogen and boron, respectively, containing species (NH3 and BHx, respectively). We probe the bulk and surface exchange of hydrogen in such subunits in LiNH2 and Li2BH4NH2 by hydrogen-deuterium experiments. In contrast to bulk exchange, surface exchange processes occur at very low temperatures - lower than a significant decomposition rate but coincidentally with the appearance of Li2NH comprising high ionic conductivity. The rate limiting step is thus the bulk transport - in agreement with the empirical correlation that the mobility of ions is linked to the hydrogen desorption kinetics of a material (P. A. Anderson et al., Faraday Discuss., 2011, 151, 271-284). However, the bulk transport of ionic species competes with the diffusion of neutral species such as ammonia, being the origin of the unwanted emission of NH3. These results are discussed with respect to the ionic mobility of borohydride and amide materials. © 2012 The Royal Society of Chemistry.

  • Details
  • Metrics
Type
research article
DOI
10.1039/c2ee02975h
Web of Science ID

WOS:000303251500014

Author(s)
Borgschulte, Andreas
Jones, Martin O.
Callini, Elsa  
Probst, Benjamin
Kato, Shunsuke  
Zuettel, Andreas  
David, William I. F.
Orimo, Shin-ichi
Date Issued

2012

Published in
Energy & Environmental Science
Volume

5

Issue

5

Start page

6823

End page

6832

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMER  
Available on Infoscience
March 3, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/111880
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés