Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ultra Low Voltage Synthesizable Memories: A Trade-Off Discussion in 65 nm CMOS
 
research article

Ultra Low Voltage Synthesizable Memories: A Trade-Off Discussion in 65 nm CMOS

Andersson, Oskar
•
Mohammadi, Babak
•
Meinerzhagen, Pascal
Show more
2016
Ieee Transactions On Circuits And Systems I-Regular Papers

In this study, design considerations for ultra low voltage (ULV) standard-cell based memories (SCM) are presented. Trade-offs for area cost, leakage power, access time, and access energy are discussed and realized using different read logic styles, latch architecture designs, and process options. Furthermore, deployment of multiple threshold voltages (Vth) options in a single standard-cell/bitcell enables additional architectural choices. Silicon measurements from five memory designs, optimized at the transistor level in conjunction with gate-level optimizations, are considered to demonstrate the different trade-off corners. Measurements show that substituting the storage element in an SCM with a D-latch using transistor stacking and channel length stretching results in lowest leakage power. Alternatively, a pass-transistor based latch as storage element reduces the area footprint at a cost of reduced access speed, which can be compensated by using a lower-Vth pass-transistor. However, relatively high speed (tens of MHz) in the near-to subthreshold (sub-Vth) region is achievable if general purpose transistors are used instead of low power transistors. A discussion is included to illustrate when to implement ULV memories using SCMs and when to choose sub-Vth SRAMs. The discussion shows that the border is between 4-6 kb, depending on the number of words and the wordlength configuration.

  • Details
  • Metrics
Type
research article
DOI
10.1109/Tcsi.2016.2537931
Web of Science ID

WOS:000380128200007

Author(s)
Andersson, Oskar
•
Mohammadi, Babak
•
Meinerzhagen, Pascal
•
Burg, Andreas  
•
Rodrigues, Joachim Neves
Date Issued

2016

Publisher

Institute of Electrical and Electronics Engineers

Published in
Ieee Transactions On Circuits And Systems I-Regular Papers
Volume

63

Issue

6

Start page

806

End page

817

Subjects

Low-power

•

SCM

•

SRAM

•

sub-threshold

•

ultra-low voltage

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
TCL  
Available on Infoscience
October 18, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/129958
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés