Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamics of a nonlinear dipole vortex
 
Loading...
Thumbnail Image
research article

Dynamics of a nonlinear dipole vortex

Hesthaven, Jan S.  
•
Lynov, JP
•
Nielsen, AH
Show more
1995
Physics of Fluids

A localized stationary dipole solution to the Euler equations with a relationship between the vorticity and streamfunction given as omega=-psi+psi(3) is presented. By numerical integration of the Euler equations this dipole is shown to be unstable. However, the initially unstable dipole reorganizes itself into a new nonlinear dipole, which is found to be stable. This new structure has a functional relationship given as omega=alpha psi+beta psi(3)-gamma psi(5). Such dipoles are stable to head-on collisions and they are capable of creating tripolar structures when colliding off axis. The effects of increasing Newtonian viscosity on the nonlinear dipole is studied revealing that even though the nonlinearity is weakening, the dipole does not relax towards a Lamb dipole. (C) 1995 American Institute of Physics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Phys Fluids 1995 Hesthaven.pdf

Type

Publisher's Version

Access type

openaccess

Size

1.53 MB

Format

Adobe PDF

Checksum (MD5)

341a29ce58801324fe88f04c2a4e8c0e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés