Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels
 
Loading...
Thumbnail Image
research article

Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels

Hug, T. S.
•
de Rooij, N. F.  
•
Staufer, U.
2006
Journal of Microfluidics and Nanofluidics

An easy method for fabricating micro- and nanofluidic channels, entirely made of a thermally grown silicon dioxide is presented. The nanochannels are up to 1-mm long and have widths and heights down to 200 nm, whereas the microfluidic channels are 20-μm wide and 4.8-μm high. The nanochannels are created at the interface of two silicon wafers. Their fabrication is based on the expansion of growing silicon dioxide and the corresponding reduction in channel cross-section. The embedded silicon dioxide channels were released and are partially freestanding. The transparent and hydrophilic silicon dioxide channel system could be spontaneously filled with aqueous, fluorescent solution. The electrical resistances of the micro- and nanofluidic channel segments were calculated and the found values were confirmed by current measurements. Electrical field strengths up to 600 V/cm were reached within the nanochannels when applying a potential of only 10 V. Electroosmotic flow (EOF) measurements through micro- and nanofluidic channel systems resulted in electroosmotic mobilities in the same order of those encountered in regular, fused silica capillaries. © Springer-Verlag 2005.

  • Details
  • Metrics
Type
research article
DOI
10.1007/s10404-005-0051-x
Author(s)
Hug, T. S.
•
de Rooij, N. F.  
•
Staufer, U.
Date Issued

2006

Published in
Journal of Microfluidics and Nanofluidics
Volume

2

Start page

117

End page

124

Note

394

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SAMLAB  
Available on Infoscience
May 12, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/39410
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés