Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Dynamic Program Parallelization
 
Loading...
Thumbnail Image
conference paper

Dynamic Program Parallelization

Huelsbergen, Lorenz
•
Larus, James R.
1992
1992 ACM Conference on LISP and Functional Programming

Static program analysis limits the performance improvements possible from compile-time parallelization. Dynamic program parallelization shifts a portion of the analysis from complie-time to run-time, thereby enabling optimizations whose static detection is overly expensive or impossible. Lambda tagging and heap resolution are two new techniques for finding loop and non-loop parallelism in imperative, sequential languages with first-class procedures and destructive heap operations (e.g., ML and Scheme). Lambda tagging annotates procedures during compilation with a tag that describes the side effects that a procedure's application may cause. During program execution, the program refines and examines tags to identify computations that may safely execute in parallel. Heap resolution uses reference counts to dynamically detect potential heap aliases and to coordinate parallel access to shared structures. An implementation of lambda tagging and heap resolution in an optimizing ML compiler for a shared memory parallel computer demonstrates that the overhead incurred by these run-time methods is easily offset by dynamically-exposed parallelism and that non-trivial procedures can be automatically parallelized with these techniques.

  • Details
  • Metrics
Type
conference paper
DOI
10.1145/141471.141567
Author(s)
Huelsbergen, Lorenz
•
Larus, James R.
Date Issued

1992

Publisher

ACM

Published in
1992 ACM Conference on LISP and Functional Programming
Start page

331

End page

323

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
VLSC  
Available on Infoscience
December 23, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/98737
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés