Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Photoinduced Electron Transfer at Liquid/Liquid Interfaces. 2. A Study of Electron Transfer and Recombination Dynamics by Intensity Modulated Photocurrent Spectroscopy (IMPS)
 
research article

Photoinduced Electron Transfer at Liquid/Liquid Interfaces. 2. A Study of Electron Transfer and Recombination Dynamics by Intensity Modulated Photocurrent Spectroscopy (IMPS)

Fermin, D. J.  
•
Duong, H. D.
•
Ding, Z.
Show more
1999
Phys. Chem. Chem. Phys

The dynamics of photoresponses associated with heterogeneous quenching of zinc tetrakis(carboxphenyl)porphyrin (ZnTPPC) and ferrocene derivatives at the water/1,2-dichloroethane interface were studied by intensity modulated photocurrent spectroscopy (IMPS). The contribution arising from the electron injection, recombination–product separation competition and the attenuation associated with the uncompensated resistance and interfacial capacitance (RC) time constant of the cell were deconvoluted in the frequency domain. The flux of electron injection was described in terms of a competition between the relaxation of the porphyrin excited state and the electron transfer step. Experimental results in the presence of ferrocene and diferrocenylethane confirmed that as the Galvani potential difference is increased, the phenomenological electron transfer rate constant increases and the ZnTPPC coverage at the liquid/liquid junction decreases. Furthermore, the recombination rate constant decreases with increasing potentials, while the product separation rate constant did not show a clear potential dependence. Photocurrent studies were extended to the electron donors dimethylferrocene and trianisylamine, as well as to the electron acceptor tetracyanoquinodimethane. The results obtained clearly indicate that the Gibbs energy of activation for the charge transfer process is affected by the Galvani potential difference. It is suggested that the electron transfer dynamics are dependent on the local electric field generation by the specifically adsorbed ZnTPPC. The general expressions for the frequency dependent photocurrents at liquid/liquid interfaces are also introduced.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PCCP_1_1999_1461_1467.pdf

Access type

restricted

Size

193.03 KB

Format

Adobe PDF

Checksum (MD5)

878945570147c2e05874fd49b090643c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés