Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. On the weakest failure detector ever
 
conference paper

On the weakest failure detector ever

Guerraoui, Rachid  
•
Herlihy, Maurice
•
Kuznetsov, Petr
Show more
2009
Distributed Computing
26th Annual ACM Symposium on Principles of Distributed Computing

Many problems in distributed computing are impossible to solve when no information about process failures is available. It is common to ask what information about failures is necessary and sufficient to circumvent some specific impossibility, e. g., consensus, atomic commit, mutual exclusion, etc. This paper asks what information about failures is necessary to circumvent any impossibility and sufficient to circumvent some impossibility. In other words, what is the minimal yet non-trivial failure information. We present an abstraction, denoted gamma, that provides very little information about failures. In every run of the distributed system,. eventually informs the processes that some set of processes in the system cannot be the set of correct processes in that run. Although seemingly weak, for it might provide random information for an arbitrarily long period of time, and it eventually excludes only one set of processes (among many) that is not the set of correct processes in the current run, gamma still captures non-trivial failure information. We show that gamma is sufficient to circumvent the fundamental wait-free set-agreement impossibility. While doing so, (a) we disprove previous conjectures about the weakest failure detector to solve set-agreement and (b) we prove that solving set-agreement with registers is strictly weaker than solving n + 1-process consensus using n-process consensus. We show that. is the weakest stable non-trivial failure detector: any stable failure detector that circumvents some wait-free impossibility provides at least as much information about failures as. does. Our results are generalized, from the wait-free to the f-resilient case, through an abstraction gamma(f) that we introduce and prove minimal to solve any problem that cannot be solved in an f-resilient manner, and yet sufficient to solve f-resilient f-set-agreement.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

distrib_computing_2009_on-the-weakest.pdf

Access type

openaccess

Size

749.75 KB

Format

Adobe PDF

Checksum (MD5)

4293d30e8382dd595048f9aff882ccad

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés