Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A human cerebral and cerebellar 8-channel transceive RF dipole coil array at 7T
 
Loading...
Thumbnail Image
research article

A human cerebral and cerebellar 8-channel transceive RF dipole coil array at 7T

Clément, Jérémie D.
•
Gruetter, Rolf
•
Ipek, Özlem
2019
Magnetic Resonance in Medicine

PURPOSE: Dipole antennas that provide high transmit field penetration with large coverage, and their use in a parallel transmit setup, may be advantageous in minimizing B 1+ -field inhomogeneities at ultra-high field, i.e 7T. We have developed and evaluated an 8-channel RF dipole coil array for imaging the entire cerebral and cerebellar regions in man. METHODS: A coil array was modeled with seven dipoles: six placed covering the occipital and temporal lobes; one covering the parietal lobe; and two loops covering the frontal lobe. Center-shortened and fractionated dipoles were simulated for the array configuration and assessed with respect to B 1+ -field at maximum specific absorption rate averaged over 10 g tissue regions in human brain. The whole-brain center-shortened dipoles with frontal loops coil array was constructed and its transmit properties were assessed with respect to MR images, B 1+ -field, and homogeneity. RESULTS: In simulations, the dipole arrays showed comparable performances to cover the whole-brain. However, for ease of construction, the center-shortened dipole was favored. High spatial resolution anatomical images of the human brain with the coil array demonstrated a full coverage of the cerebral cortex and cerebellum. CONCLUSIONS: The 8-channel center-shortened dipoles and frontal loops coil array promises remarkable efficiency in highly challenging regions as the cerebellum, and phase-only RF shimming of whole-brain could greatly benefit ultra-high field magnetic resonance imaging of the human brain at 7T.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Clement_dipolearray_MRM_2019.pdf

Access type

openaccess

Size

1.82 MB

Format

Adobe PDF

Checksum (MD5)

74e6db5178b87a0ecb85b80e5473eaaf

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés