Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Automatic detection of reaction start/endpoints in chemical and biotechnological reaction systems
 
research article

Automatic detection of reaction start/endpoints in chemical and biotechnological reaction systems

Corminboeuf, Grégory
•
Amrhein, Michael  
•
Naef, Olivier
Show more
2007
Chemometrics and Intelligent Laboratory Systems

A classification methodology for the automatic detection of start- and endpoints of chemical and biotechnological reaction systems from spectral reaction data is proposed. In the calibration phase, several batch experiments must be conducted covering the expected operational variability (e.g., initial concentrations, dosage amount and time). The start/endpoint of the reaction of interest (e.g. start of a side reaction, stop of the main reaction) is determined by using Evolving Factor Analysis (EFA) and cross-checked with common process variables (temperature, mass, heat flow) or chromatographic measurements if available. A Partial Least-Squares Discriminant Analysis (PLS-DA) model is built on the calibration batches and then used for on-line detection of the start/stop of the reaction of interest based on spectral data from a new batch. The methodology is illustrated for (i) simulated spectra of a fed-batch reactor exhibiting two consecutive reactions with a limiting initial reactant for the first reaction, and (ii) measured infrared spectra of an aldol reaction exhibiting a side reaction. A PLS-DA model is built to on-line detect the stop of the main reaction. The effect of data pre-treatment methods and the choice of the number of latent variables on various classification performance indices (efficiency, false positive rate and false negative rate) are evaluated. For the simulated data, the best model is obtained with four latent variables and mean-centered data. The classification efficiency for a validation set of five experiments is 99.0% and the delay for the endpoint detection is about 1 min which corresponds to the sampling time. For the measured data, the best model is obtained with five latent variables and pre-treatment using standard normal variate. The classification efficiency for a validation set of two experiments is 95.9% and the delay for the endpoint detection is about 8 min for typical batch duration of 250 min.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Reaction end-point ChemoLab V2.zip

Access type

restricted

Size

1004.3 KB

Format

ZIP

Checksum (MD5)

e78e25933ef418608251fde38758a723

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés