Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Enhancer loops appear stable during development and are associated with paused polymerase
 
research article

Enhancer loops appear stable during development and are associated with paused polymerase

Ghavi-Helm, Yad
•
Klein, Felix A.
•
Pakozdi, Tibor
Show more
2014
Nature

Developmental enhancers initiate transcription and are fundamental to our understanding of developmental networks, evolution and disease. Despite their importance, the properties governing enhancer-promoter interactions and their dynamics during embryogenesis remain unclear. At the beta-globin locus, enhancer-promoter interactions appear dynamic and cell-type specific(1,2), whereas at the HoxD locus they are stable and ubiquitous, being present in tissues where the target genes are not expressed(3,4). The extent to which preformed enhancer-promoter conformations exist at other, more typical, loci and how transcription is eventually triggered is unclear. Here we generated a high-resolution map of enhancer three-dimensional contacts during Drosophila embryogenesis, covering two developmental stages and tissue contexts, at unprecedented resolution. Although local regulatory interactions are common, long-range interactions are highly prevalent within the compact Drosophila genome. Each enhancer contacts multiple enhancers, and promoters with similar expression, suggesting a role in their co-regulation. Notably, most interactions appear unchanged between tissue context and across development, arising before gene activation, and are frequently associated with paused RNA polymerase. Our results indicate that the general topology governing enhancer contacts is conserved from flies to humans and suggest that transcription initiates from preformed enhancer-promoter loops through release of paused polymerase.

  • Details
  • Metrics
Type
research article
DOI
10.1038/nature13417
Web of Science ID

WOS:000339908000039

Author(s)
Ghavi-Helm, Yad
Klein, Felix A.
Pakozdi, Tibor
Ciglar, Lucia
Noordermeer, Daan
Huber, Wolfgang
Furlong, Eileen E. M.
Date Issued

2014

Publisher

Nature Publishing Group

Published in
Nature
Volume

512

Issue

7512

Start page

96

End page

100

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ISREC  
Available on Infoscience
October 23, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/107789
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés