Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks
 
research article

KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks

Imbeault, Michaël
•
Helleboid, Pierre-Yves
•
Trono, Didier  
2017
Nature

The human genome encodes some 350 Kruppel-associated box (KRAB) domain-containing zinc-finger proteins (KZFPs), the products of a rapidly evolving gene family that has been traced back to early tetrapods(1,2). The function of most KZFPs is unknown, but a few have been demonstrated to repress transposable elements in embryonic stem (ES) cells by recruiting the transcriptional regulator TRIM28 and associated mediators of histone H3 Lys9 trimethylation (H3K9me3)-dependent heterochromatin formation and DNA methylation(3-9). Depletion of TRIM28 in human or mouse ES cells triggers the upregulation of a broad range of transposable elements(4,10,11), and recent data based on a few specific examples have pointed to an arms race between hosts and transposable elements as an important driver of KZFP gene selection(5). Here, to obtain a global view of this phenomenon, we combined phylogenetic and genomic studies to investigate the evolutionary emergence of KZFP genes in vertebrates and to identify their targets in the human genome. First, we unexpectedly reassigned the root of the family to a common ancestor of coelacanths and tetrapods. Second, although we confirmed that the majority of KZFPs bind transposable elements and pinpoint cases of ongoing co-evolution, we found that most of their transposable element targets have lost all transposition potential. Third, by examining the interplay between human KZFPs and other transcriptional modulators, we obtained evidence that KZFPs exploit evolutionarily conserved fragments of transposable elements as regulatory platforms long after the arms race against these genetic invaders has ended. Together, our results demonstrate that KZFPs partner with transposable elements to build a largely species-restricted layer of epigenetic regulation.

  • Details
  • Metrics
Type
research article
DOI
10.1038/nature21683
Web of Science ID

WOS:000397018000051

Author(s)
Imbeault, Michaël
Helleboid, Pierre-Yves
Trono, Didier  
Date Issued

2017

Publisher

Nature Publishing Group

Published in
Nature
Volume

543

Start page

550

End page

554

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LVG  
Available on Infoscience
March 9, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/135100
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés