Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Novel Pulp Fibre Reinforced Thermoplastic Composites
 
research article

Novel Pulp Fibre Reinforced Thermoplastic Composites

Lundquist, L.  
•
Marque, B.
•
Hagstrand, P.-O.  
Show more
2003
Composites Science and Technology

The reinforcement potential of pulp fibres is presently not fully explored in thermoplastic composites. One of the reasons is that currently used processing methods comprise several severe thermomechanical steps inducing premature degradation of the fibres. Three pre-forming techniques were developed to prepare pulp fibre reinforced cellulose diacetate (CDA) pre-forms, namely filtration-forming, solvent impregnation, and commingling with polymer fibres. These techniques eliminate all thermomechanical steps, prior to final processing. The CDA polymer was nevertheless found to be very sensitive to the specific process histories relevant to each technique, contrary to the pulp fibres, whose size, shape, and mechanical properties were not affected by neither of the preforming processes. The tensile properties of composites compression moulded from solvent impregnated pre-forms were compared to those of ground china reed reinforced CDA. Whereas ground china reed particles were found to act merely as fillers increasing composite stiffness, a remarkable reinforcement effect was observed for the pulp fibre reinforced impregnated pre-forms. A combination of a stiffness increase by a factor 5.2 and a strength increase by a factor of 2.3 relative to the pure polymer was achieved, whereas in typical pulp fibre reinforced thermoplastics, the stiffness increase is frequently obtained at the expense of loss in strength. This work highlights the key factors which control the mechanical performance of pulp fibre reinforcements previously neglected in literature, and demonstrates the remarkable reinforcement potential of such renewable material. Furthermore, the properties achieved by optimising the extraction and processing steps indicate that pulp fibre reinforced thermoplastics composites are appropriate materials for load bearing applications.

  • Details
  • Metrics
Type
research article
DOI
10.1016/S0266-3538(02)00192-6
Web of Science ID

WOS:000180077600013

Author(s)
Lundquist, L.  
Marque, B.
Hagstrand, P.-O.  
Leterrier, Y.  
Månson, J.-A. E.  
Date Issued

2003

Published in
Composites Science and Technology
Volume

63

Issue

1

Start page

137

End page

152

Subjects

fibres

•

short-fibre composites

•

wood

•

mechanical properties

•

microstructure

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LTC  
Available on Infoscience
June 26, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/232337
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés