Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Timing-Monitoring Sequential for Forward and Backward Error-Detection in 28 nm FD-SOI
 
Loading...
Thumbnail Image
conference paper

A Timing-Monitoring Sequential for Forward and Backward Error-Detection in 28 nm FD-SOI

Bonetti, Andrea  
•
Constantin, Jeremy
•
Teman, Adam Shmuel
Show more
2018
IEEE International Symposium on Circuits and Systems (ISCAS)
IEEE International Symposium on Circuits and Systems (ISCAS)

The increasing impact of variability on near-threshold nanometer circuits calls for a tighter online monitoring and control of the available timing margins. Error-detection sequentials are widely used together with error-correction techniques to operate digital designs with such carefully controlled far-below-worst-case margins, ensuring their correct operation even in the presence of uncertainties and variations. However, these registers are often designed only to either detect setup timing violations or to measure the available positive timing slack for a small detection-window. In this paper we propose a timing-monitoring sequential that provides both timing-monitoring modes, which can be selected at run-time depending on the desired timing-monitoring strategy. As the detection window of the presented circuit depends on the duty-cycle of the clock, either slow paths or fast paths can be monitored and measured with wide timing windows. The performance of this timing-monitoring sequential is evaluated in a 28nm FD-SOI process with post-layout simulations which show that the circuit is able to monitor a positive timing slack as small as 140 ps or to measure a path delay as fast as 50 ps. The proposed circuit is applied to a digital multiplier that was fabricated in a test chip and measurements show that the timing-monitoring sequentials are able to measure the critical path of the multiplier with a 1% accuracy and without incurring any timing violation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

bonetti-iscas-2018.pdf

Type

Publisher's Version

Access type

openaccess

Size

808.06 KB

Format

Adobe PDF

Checksum (MD5)

1893c10e531b200d2d97f540a3aa8b4b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés