Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimized Design of Silicon Heterojunction Solar Cells for Field Operating Conditions
 
research article

Optimized Design of Silicon Heterojunction Solar Cells for Field Operating Conditions

Cattin, Jean  
•
Dupré, Olivier
•
Aissa, Brahim
Show more
November 28, 2019
IEEE Journal of Photovoltaics

Solar modules are currently characterised at standard test conditions (STC), defined at 1000 W/m2 and 25 °C. However, solar modules in actual outdoor operating conditions typically operate at lower illumination and higher temperature than STC, which significantly affects their performance ratio (average harvesting efficiency over efficiency in STC). Silicon heterojunction (SHJ) technology displays both good temperature coefficient and good low-illumination performances, leading to outstanding performance ratios. We investigate here SHJ solar cells that use a-SiCx(n) layer as front doped layer with different carbon contents under different climates conditions. Adding carbon increases transparency but also resistive losses at room temperature (compared to carbon-free layers), leading to a significant decrease in efficiency at STC. We demonstrate that despite this difference at STC, the difference in energy harvesting efficiency is much smaller in all investigated climates. Furthermore, we show that a relative gain of 0.4% to 0.8% in harvesting efficiency is possible by adding a certain content of carbon in the front (n) layer, compared to carbon-free cells optimised for STC.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Submission-infoscience.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

1.22 MB

Format

Adobe PDF

Checksum (MD5)

f39fbfc148d0de08d3390ba3c9e2fa1b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés