A Wearable Real-Time System for Simultaneous Wireless Power and Data Transmission to Cortical Visual Prosthesis
Wireless, miniaturised and distributed neural interfaces are emerging neurotechnologies. Although extensive research efforts contribute to their technological advancement, the need for real-time systems enabling simultaneous wireless information and power transfer toward distributed neural implants remains crucial. Here we present a complete wearable system including a software for real-time image capturing, processing and digital data transfer; an hardware for high radiofrequency generation and modulation via amplitude shift keying; and a 3-coil inductive link adapt to operate with multiple miniaturised receivers. The system operates in real-time with a maximum frame rate of 20 Hz, reconstructing each frame with a matrix of 32 x 32 pixels. The device generates a carrier frequency of 433.92 MHz. It transmits the highest power of 32 dBm with a data rate of 6 Mbps and a variable modulation index as low as 8%, thus potentially enabling wireless communication with 1024 miniaturised and distributed intracortical microstimulators. The system is primarily conceived as an external wearable device for distributed cortical visual prosthesis covering a visual field of 20(degrees). At the same time, it is modular and versatile, being suitable for multiple applications requiring simultaneous wireless information and power transfer to large-scale neural interfaces.
WOS:001236736100004
2024-06-01
18
3
580
591
REVIEWED
Funder | Grant Number |
Interdisciplinary Seed Fund from École Polytechnique Fédérale de Lausanne | |