Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. UV-intensity, temperature and dark-curing effects in cationic photo-polymerization of a cycloaliphatic epoxy resin
 
research article

UV-intensity, temperature and dark-curing effects in cationic photo-polymerization of a cycloaliphatic epoxy resin

Golaz, Basile  
•
Michaud, Véronique  
•
Leterrier, Yves  
Show more
2012
Polymer

A difunctional cycloaliphatic epoxy monomer was cationically photo-polymerized in the presence of a diaryliodonium salt photoinitiator and an isopropyl thioxanthone photosensitizer at different temperatures and UV intensities. The photo-polymerization kinetics and structure formation were analysed using photo-DSC, IR spectroscopy and photo-rheology. An autocatalytic relation was used to model the conversion state with Arrhenius and power-law relationships for temperature and light intensity dependence. Conversion was found to depend on sample thickness, following the Beer-Lambert law. Photo-rheology measurements showed that the system vitrified before gelation at ambient temperature, and after gelation at high temperature under intense UV illumination. Time temperature transformation and time intensity transformation diagrams were built. Moreover, isothermal dark-curing enabled significant conversion increases up to the occurrence of vitrification, while thermal post-curing above Tg led to conversion as high as 71%. Thermo-mechanical measurements enabled to quantify Tg and the effects of the increase in conversion provided by thermal post-curing.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.polymer.2012.03.025
Web of Science ID

WOS:000304214500010

Author(s)
Golaz, Basile  
Michaud, Véronique  
Leterrier, Yves  
Månson, Jan-Anders  
Date Issued

2012

Published in
Polymer
Volume

53

Issue

10

Start page

2038

End page

2048

Subjects

Photopolymerization

•

Cationic

•

Master curves

•

Kinetics

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LTC  
Available on Infoscience
April 2, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/79147
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés