Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Numerical analysis of fringe patterns recorded in holographic interferometry using high-order ambiguity function
 
research article

Numerical analysis of fringe patterns recorded in holographic interferometry using high-order ambiguity function

Gorthi, Sai Siva  
•
Rastogi, Pramod  
2009
Journal of Modern Optics

This letter introduces a new approach for the demodulation of fringe patterns recorded in holographic interferometry using high-order ambiguity function (HAF). The proposed approach is capable of retrieving the phase from a single fringe pattern. The main advantage of this approach is that it directly provides an estimation of the continuous phase distribution and thereby avoids the necessity of using a cumbersome 2D phase unwrapping procedure. This method first computes the discrete-time analytic signal of the recorded fringe pattern. Then, by modelling this analytic signal as a polynomial phase signal embedded in additive complex white Gaussian noise, a parametric estimation procedure based on HAF is employed to directly estimate the unwrapped phase distribution. Numerical simulations and experimental results demonstrate the potential of the proposed approach.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JMO_1.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

985.61 KB

Format

Adobe PDF

Checksum (MD5)

05f6d4b882fc891706b5e8525ea46df8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés