Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. MapPool -Bubbling up an extremely large corpus of maps for AI
 
conference paper not in proceedings

MapPool -Bubbling up an extremely large corpus of maps for AI

Schnürer, Raimund  
2024
2024 ICA Workshop on AI, Geovisualization, and Analytical Reasoning

MapPool is a dataset of 75 million potential maps and textual captions. It has been derived from CommonPool, a dataset consisting of 12 billion text-image pairs from the Internet. The images have been encoded by a vision transformer and classified into maps and non-maps by a support vector machine. This approach outperforms previous models and yields a validation accuracy of 98.5%. The MapPool dataset may help to train data-intensive architectures in order to establish vision and language foundation models specialized in maps. The analysis of the dataset and the exploration of the embedding space offers a large potential for future work. It is accessible via https://geoai.icaci.org/mappool/

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

MapPool.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY

Size

234.88 KB

Format

Adobe PDF

Checksum (MD5)

f1360f7d7d36eaa07407ab46eb22087a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés