Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Evidence of extensive lunar crust formation in impact melt sheets 4,330 Myr ago
 
research article

Evidence of extensive lunar crust formation in impact melt sheets 4,330 Myr ago

White, L. F.
•
Černok, A.
•
Darling, J. R.
Show more
2020
Nature Astronomy

Accurately constraining the formation and evolution of the lunar magnesian suite is key to understanding the earliest periods of magmatic crustal building that followed accretion and primordial differentiation of the Moon. However, the origin and evolution of these unique rocks is highly debated. Here, we report on the microstructural characterization of a large (~250-μm) baddeleyite (monoclinic-ZrO2) grain in Apollo troctolite 76535 that preserves quantifiable crystallographic relationships indicative of reversion from a precursor cubic-ZrO2 phase. This observation places important constraints on the formation temperature of the grain (>2,300 °C), which endogenic processes alone fail to reconcile. We conclude that the troctolite crystallized directly from a large, differentiated impact melt sheet 4,328 ± 8 Myr ago. These results suggest that impact bombardment would have played a critical role in the evolution of the earliest planetary crusts.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés