Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Learning Optimal Impedance Control During Complex 3D Arm Movements
 
research article

Learning Optimal Impedance Control During Complex 3D Arm Movements

Naceri, A.
•
Schumacher, T.
•
Li, Q.
Show more
2021
IEEE Robotics and Automation Letters

In daily life, humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can adapt their movements to unstable dynamics of the external environments. The underlying adaptive mechanism has been investigated, employing a simple planar device perturbed by external 2D force patterns. In the present work, we will employ a more advanced, compliant robot arm to extend previous work to a more realistic 3D-setting. We study the adaptive mechanism and use machine learning to capture the human adaptation behavior. In order to model human's stiffness adaptive skill, we give human subjects the task to reach for a target by moving a handle assembled on the end-effector of a compliant robotic arm. The arm is force controlled and the human is required to navigate the handle inside a non-visible, virtual maze and explore it only through robot force feedback when contacting maze virtual walls. By sampling the hand's position and force data, a computational model based on a combination of model predictive control and nonlinear regression is used to predict participants' successful trials. Our study shows that participants selectively increased the stiffness within the axis direction of uncertainty in order to compensate for instability caused by a divergent external force field. The learned controller was able to successfully mimic this behavior. When it is deployed on the robot for the navigation task, the robot arm successfully adapt to the unstable dynamics in the virtual maze, in a similar manner as observed in the participants' adaptation skill.

  • Details
  • Metrics
Type
research article
DOI
10.1109/LRA.2021.3056371
Author(s)
Naceri, A.
Schumacher, T.
Li, Q.
Calinon, S.  
Ritter, H.
Date Issued

2021

Publisher

IEEE

Published in
IEEE Robotics and Automation Letters
Volume

6

Issue

2

Start page

1248

End page

1255

Subjects

learning from demonstration

•

human-robot collaboration

•

impedance control

URL

Link to IDIAP database

http://publications.idiap.ch/downloads/papers/2021/Naceri_RA-L_2021.pdf
Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LIDIAP  
Available on Infoscience
April 13, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/177238
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés