Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Scattering of wave maps from $\mathbb{R}^{2+1}$ to general targets
 
research article

Scattering of wave maps from $\mathbb{R}^{2+1}$ to general targets

Nahas, J.  
2012
Calculus of Variations and Partial Differential Equations

We show that smooth, radially symmetric wave maps $U$ from $\mathbb{R}^{2+1}$ to a compact target manifold $N$, where $\partial_r U$ and $\partial_t U$ have compact support for any fixed time, scatter. The result will follow from the work of Christodoulou and Tahvildar-Zadeh, and Struwe, upon proving that for $\lambda' \in (0,1)$, energy does not concentrate in the set $$K_\frac{5}{8}T,\frac{7}{8}T^{\lambda'} = {(x,t) \in \mathbb R^{2+1} \vert \hspace{5pt} |x| \leq \lambda' t, t \in [(5/8)T,(7/8)T] }.$$

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

526_2011_Article_489.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

218.98 KB

Format

Adobe PDF

Checksum (MD5)

6d2f7e10a4ff4ec85721e8b8af45eea5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés