Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Unifying Representer Theorem for Inverse Problems and Machine Learning
 
research article

A Unifying Representer Theorem for Inverse Problems and Machine Learning

Unser, Michael  
2021
Foundations of Computational Mathematics

Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an l(1)-norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Unser2020_Article_AUnifyingRepresenterTheoremFor.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

427.75 KB

Format

Adobe PDF

Checksum (MD5)

a75ee0aa33d6422e2400ae35dd398197

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés