Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Learning of Closed-Loop Motion Control
 
Loading...
Thumbnail Image
conference paper

Learning of Closed-Loop Motion Control

Farshidian, F.
•
Neunert, M.
•
Buchli, J.
2014
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014)

Learning motion control as a unified process of designing the reference trajectory and the controller is one of the most challenging problems in robotics. The complexity of the problem prevents most of the existing optimization algorithms from giving satisfactory results. While model-based algorithms like iterative linear-quadratic-Gaussian (iLQG) can be used to design a suitable controller for the motion control, their performance is strongly limited by the model accuracy. An inaccurate model may lead to degraded performance of the controller on the physical system. Although using machine learning approaches to learn the motion control on real systems have been proven to be effective, their performance depends on good initialization. To address these issues, this paper introduces a two-step algorithm which combines the proven performance of a model-based controller with a model-free method for compensating for model inaccuracy. The first step optimizes the problem using iLQG. Then, in the second step this controller is used to initialize the policy for our PI$^2$-01 reinforcement learning algorithm. This algorithm is a derivation of the PI$^2$ algorithm enabling more stable and faster convergence. The performance of this method is demonstrated both in simulation and experimental results.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

p_14_iros_ballbot_cameraready.pdf

Access type

openaccess

Size

337.55 KB

Format

Adobe PDF

Checksum (MD5)

0d952c6defb9830f535752e3cf8187ae

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés