Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Generation of out-of-plane polarized spin current in (permalloy, Cu)/EuS interfaces
 
research article

Generation of out-of-plane polarized spin current in (permalloy, Cu)/EuS interfaces

Gupta, Pankhuri
•
Chowdhury, Niru
•
Xu, Mingran  
Show more
February 12, 2024
Physical Review B

The generation of out-of-plane polarized spin current is crucial for efficiently manipulating perpendicularly magnetized systems used in high-density magnetic recording. Here, we demonstrate the generation of out-of-plane polarized spin current at room temperature using an insulator, EuS. By employing angleresolved spin-torque ferromagnetic resonance, we find a large unconventional out-of-plane torque conductivity, sigma zDL = -0.13 x 105( h over bar /2e) (S2 m)-1 in the Py(= Ni81Fe19)/EuS bilayer, which is comparable to the conventional in-plane dampinglike torque conductivity, sigma yDL. Additionally, a giant in-plane fieldlike torque (sigma zFL) with a magnitude of 27 times larger than that of the conventional out-of-plane fieldlike torque (sigma yFL) is also observed in the Py/EuS bilayer. The unconventional torques due to the out-of-plane polarized spin current (sigma zDL and sigma zFL) persist even by inserting a 10-nm-thick Cu layer between Py and EuS. Our findings demonstrate that the unconventional torques in these systems originate from the interfaces through spin swapping and/or spin-orbit precession mechanisms.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés