Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Anisotropic node distortions in amorphous MOFs: Low-valent Zr sites as catalytic hotspots
 
research article

Anisotropic node distortions in amorphous MOFs: Low-valent Zr sites as catalytic hotspots

Schertenleib, Till  
•
Asgari, Mehrdad
•
Mouriño, Beatriz  
Show more
2025
Chem

We introduce a new approach to defect engineering in Zr-based metal-organic frameworks (Zr-MOFs), aiming to reduce Zr site valency while preserving high node connectivity. Using a rapid heat treatment (RHT) in humid air, oxygen vacancies (O-vacancies) were created in Dresden University of Technology (DUT)-67 through cluster dehydration. Unlike conventional defect engineering, aimed at creating missing-linker defects, this method breaks intra-cluster Zr-μ3O–Zr bonds, generating coordinatively unsaturated Zr (Zrcus) sites. Pair distribution function (PDF) analysis, X-ray absorption spectroscopy (XAS), and density functional theory (DFT) calculations reveal that the O-vacancies lead to symmetry breaking, irreversible node distortions, and framework amorphization. This treatment converts 50% of metal sites to Zrcus sites, nearly doubling the catalytic activity of DUT-67 in glyoxal conversion to glycolic acid. DFT modeling and in situ PDF analysis highlight the dynamic behavior of Zr clusters under reaction conditions, suggesting a new avenue for defect engineering in Zr-MOFs to enhance catalytic performance.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1016_j.chempr.2025.102619.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

5.81 MB

Format

Adobe PDF

Checksum (MD5)

534db282b734df2d3ec07bb3163b4c16

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés