Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Diffusion Bias-Compensated RLS Estimation Over Adaptive Networks
 
research article

Diffusion Bias-Compensated RLS Estimation Over Adaptive Networks

Bertrand, A.
•
Moonen, M.
•
Sayed, Ali H.  
2011
IEEE Transactions on Signal Processing

We study the problem of distributed least-squares estimation over ad hoc adaptive networks, where the nodes have a common objective to estimate and track a parameter vector. We consider the case where there is stationary additive colored noise on both the regressors and the output response, which results in biased local least-squares estimators. Assuming that the noise covariance can be estimated (or is known a priori), we first propose a bias-compensated recursive least-squares algorithm (BC-RLS). However, this bias compensation increases the variance or the mean-square deviation (MSD) of the local estimators, and errors in the noise covariance estimates may still result in residual bias. We demonstrate that the MSD and residual bias can then be significantly reduced by applying diffusion adaptation, i.e., by letting nodes combine their local estimates with those of their neighbors. We derive a necessary and sufficient condition for mean-square stability of the algorithm, under some mild assumptions. Furthermore, we derive closed-form expressions for its steady-state mean and mean-square performance. Simulation results are provided, which agree well with the theoretical results. We also consider some special cases where the mean-square stability improvement of diffusion BC-RLS over BC-RLS can be mathematically verified.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TSP.2011.2163631
Author(s)
Bertrand, A.
Moonen, M.
Sayed, Ali H.  
Date Issued

2011

Publisher

IEEE

Published in
IEEE Transactions on Signal Processing
Volume

59

Issue

11

Start page

5212

End page

5224

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ASL  
Available on Infoscience
December 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/143106
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés