Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanisms and critical properties in drying shrinkage of soils: experimental and numerical parametric studies
 
research article

Mechanisms and critical properties in drying shrinkage of soils: experimental and numerical parametric studies

Hu, LB
•
Péron, Hervé  
•
Hueckel, Tomasz  
Show more
2013
Canadian Geotechnical Journal

Mechanisms of free-shrinkage strains of desiccating deformable initially saturated soils are studied. The role of the surface evaporation rate, surface tension and viscosity of pore fluid, and soil compressibility and permeability is investigated in experimental and numerical parametric studies. Two different geomaterials with three different pore fluids are tested and numerically simulated using a macroscale Biot theory model and a mesoscale vessel model. Evolution of shrinkage strain and fluid content is reported and evaluated. The total amount of shrinkage and shrinkage limit are found to correlate with both solid fraction compressibility and surface tension of the fluid fraction. Most of the strain occurs in the saturated stage of drying concomitant with a build-up of fluid suction. The macroscopic Biot model yields good results in the saturated stage of drying. However, the air-entry criteria are all formulated at meso- or microscale. Hence, a mesoscale deformable pore vessel model is adopted, with pore fluid suction limited by a fluid tensile stress threshold identified with fluid cavitation. Beyond cavitation, air entry occurs. Subsequently, partially fluid-filled pore vessels are considered with fluid evaporation across a migrating fluid–gas interface within the vessel. A mesoscale model parametric study confirms that the total drying shrinkage strain and the shrinkage limit depend on the solids' compressibility, as well as on the fluid surface tension.

  • Details
  • Metrics
Type
research article
DOI
10.1139/cgj-2012-0065
Web of Science ID

WOS:000319057500007

Author(s)
Hu, LB
Péron, Hervé  
Hueckel, Tomasz  
Laloui, Lyesse  
Date Issued

2013

Publisher

National Research Council Canada

Published in
Canadian Geotechnical Journal
Volume

50

Issue

5

Start page

536

End page

549

Subjects

soil

•

desiccation

•

shrinkage

•

cavitation

•

pore fuid

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMS  
Available on Infoscience
February 7, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/88669
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés