Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Learning from sparse codes
 
conference paper

Learning from sparse codes

Karygianni, Sofia  
•
Frossard, Pascal  
2016
2016 Ieee International Conference On Image Processing (Icip)
IEEE International Conference on Image Processing

In this paper we address the problem of learning image structures directly from sparse codes. We first model images as linear combinations of molecules, which are themselves groups of atoms from a redundant dictionary. We then formulate a new structure learning problem that learns molecules directly from image sparse codes, namely from the image representation in the atom domain. We build on a structural difference function that permits to compare molecules and we derive an algorithm that analyses sparse codes and estimates the most relevant signal structure without reconstructing the images. Experiments on both synthetic and real image datasets confirm the benefits of our new method compared to traditional learning methods.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

KarygianniICIPFinal.pdf

Access type

openaccess

Size

283.01 KB

Format

Adobe PDF

Checksum (MD5)

28a2f9639a1053d01d73ea7dcf83c4a7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés