Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Actuator Placement under Structural Controllability using Forward and Reverse Greedy Algorithms
 
research article

Actuator Placement under Structural Controllability using Forward and Reverse Greedy Algorithms

Guo, Baiwei
•
Karaca, Orcun
•
Summers, Tyler H.
Show more
2020
IEEE Transactions on Automatic Control

Actuator placement is an active field of research which has received significant attention for its applications in complex dynamical networks. In this paper, we study the problem of finding a set of actuator placements minimizing the metric that measures the average energy consumed for state transfer by the controller, while satisfying a structural controllability requirement and a cardinality constraint on the number of actuators allowed. As no computationally efficient methods are known to solve such combinatorial set function optimization problems, two greedy algorithms, forward and reverse, are proposed to obtain approximate solutions. We first show that the constraint sets these algorithms explore can be characterized by matroids. We then obtain performance guarantees for the forward and reverse greedy algorithms applied to the general class of matroid optimization problems by exploiting properties of the objective function such as the submodularity ratio and the curvature. Finally, we propose feasibility check methods for both algorithms based on maximum flow problems on certain auxiliary graphs originating from the network graph. Our results are verified with case studies over large networks.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TAC.2020.3044284
Author(s)
Guo, Baiwei
Karaca, Orcun
Summers, Tyler H.
Kamgarpour, Maryam  
Date Issued

2020

Published in
IEEE Transactions on Automatic Control
Start page

1

End page

1

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SYCAMORE  
Available on Infoscience
December 1, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/183311
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés