Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Order-Optimal Consensus Through Randomized Path Averaging
 
research article

Order-Optimal Consensus Through Randomized Path Averaging

Bénézit, Florence  
•
Dimakis, Alexandros G.
•
Thiran, Patrick  
Show more
2010
IEEE Transactions on Information Theory

Gossip algorithms have recently received significant attention, mainly because they constitute simple and robust mes- sage-passing schemes for distributed information processing over networks. However, for many topologies that are realistic for wire- less ad-hoc and sensor networks (like grids and random geometric graphs), the standard nearest-neighbor gossip converges as slowly as flooding ( O(n^2) messages). A recently proposed algorithm called geographic gossip improves gossip efficiency by a n^1/2 factor, by exploiting geographic information to enable multihop long-distance communications. This paper proves that a variation of geographic gossip that averages along routed paths, improves efficiency by an additional n^1/2 factor, and is order optimal (O(n) messages) for grids and random geometric graphs with high prob- ability. We develop a general technique (travel agency method) based on Markov chain mixing time inequalities which can give bounds on the performance of randomized message-passing algo- rithms operating over various graph topologies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

BDTV, 15.2010.pdf

Access type

openaccess

Size

1.68 MB

Format

Adobe PDF

Checksum (MD5)

b0d5770525511c842e577df659a806db

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés