Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Relation between potential and catalytic activity of rhodium in propylene combustion
 
research article

Relation between potential and catalytic activity of rhodium in propylene combustion

Fóti, G.  
•
Bolzonella, I.
•
Bachelin, D.
Show more
2004
Journal of Applied Electrochemistry

The relation between the catalyst potential and the catalytic performance has been investigated in the gas-phase combustion of propylene with oxygen over rhodium catalysts at 375 DegC. The rhodium catalyst, deposited on yttria-stabilized zirconia (YSZ) solid electrolyte, also served as working electrode in the electrochem. cell. Under open-circuit conditions, the measured catalyst potential was found to be a sensitive indicator of the oxidn. state of the rhodium catalyst, which influences the catalytic reaction rate dramatically and depends strongly both on the method of catalyst film prepn. and on the compn. of the reacting gas mixt. In turn, under closed-circuit conditions, the applied catalyst potential is a convenient tool to maintain the catalyst in its more active, reduced form and to control its catalytic performance. The activity of at. oxygen at the three-phase boundary (tpb) during open-circuit catalytic reaction was estd. from solid electrolyte potentiometric (SEP) measurements, in good agreement with the av. surface oxidn. state obtained from XRD and XPS analyses. O/Rh at. ratios higher than stoichiometric were found by XPS at the outer surface of the catalysts suggesting a strong open circuit O2- spillover due to strong metal support interactions (SMSI) and a concomitant extension of the elec. double layer to the gas-exposed catalyst surface, similarly to emersed electrodes in aq. electrochem. Applying potentials up to several hundreds of mV, highly nonfaradaic promotion of propylene combustion was achieved. Electrochem. promotion of catalysis (EPOC) was most efficient at stoichiometric gas compn., i.e., close to the limit of surface redn., and with the catalyst exhibiting the smallest O2- spillover population at open-circuit conditions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10800_2004_Article_5143749.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

148.76 KB

Format

Adobe PDF

Checksum (MD5)

075ade26ba6bc063512f29c107dbf50b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés