Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Finite element analysis and experiments on a silicon membrane actuated by an epitaxial PZT thin film for localized-mass sensing applications
 
Loading...
Thumbnail Image
research article

Finite element analysis and experiments on a silicon membrane actuated by an epitaxial PZT thin film for localized-mass sensing applications

Isarakorn, D.  
•
Briand, D.  
•
Sambri, A.
Show more
2010
Sensors and Actuators B: Chemical

In this paper, we investigate the performance of a piezoelectric membrane actuated by an epitaxial piezoelectric Pb(Zr0.2Ti0.8)O-3 (PZT) thin film for localized-mass sensing applications. The fabrication and characterization of piezoelectric circular membranes based on epitaxial thin films prepared on a silicon wafer are presented. The dynamic behavior and mass sensing performance of the proposed structure are experimentally investigated and compared to numerical analyses. A 1500 mu m diameter silicon membrane actuated by a 150 nm thick epitaxial PZT film exhibits a strong harmonic oscillation response with a high quality factor of 110-144 depending on the resonant mode at atmospheric pressure. Different aspects related to the effect of the mass position and of the resonant mode on the mass sensitivity as well as the minimum detectable mass are evaluated. The operation of the epitaxial PZT membrane as a mass sensor is determined by loading polystyrene microspheres. The mass sensitivity is a function of the mass position, which is the highest at the antinodal points. The epitaxial PZT membrane exhibits a mass sensitivity in the order of 10(-12) g/Hz with a minimum detectable mass of 5 ng. The results reveal that the mass sensor realized with the epitaxial PZT thin film, which is capable of generating a high actuating force, is a promising candidate for the development of high performance mass sensors. Such devices can be applied for various biological and chemical sensing applications.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.snb.2010.10.009
Web of Science ID

WOS:000289019300009

Author(s)
Isarakorn, D.  
•
Briand, D.  
•
Sambri, A.
•
Gariglio, S.
•
Triscone, J.-M.
•
Guy, F.
•
Reiner, J. W.
•
Ahn, C. H.
•
De Rooij, N. F.  
Date Issued

2010

Publisher

Elsevier

Published in
Sensors and Actuators B: Chemical
Volume

153

Start page

54

End page

63

Subjects

Mass sensor

•

Epitaxial oxide thin film

•

Piezoelectric membrane

•

Finite element analysis

•

Lead zirconate titanate (PZT)

•

Piezoelectric thin film

•

Piezoelectric Microcantilevers

•

Micromechanical Oscillators

•

Impedance Characterization

•

Cantilever

•

Sensors

•

Sensitivity

•

Modes

•

Fabrication

•

Resonators

•

Behavior

Peer reviewed

NON-REVIEWED

Written at

EPFL

EPFL units
SAMLAB  
Available on Infoscience
January 13, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/62930
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés