WNT signaling coordinately controls mouse limb bud outgrowth and establishment of the digit-interdigit pattern
Self-organization, such as the emergence of a pattern from a homogenous state, is a fascinating property of biological systems. Early limb bud outgrowth and patterning in mice are controlled by a robust and self-regulatory signaling system, and initiation of the periodic digit-interdigit pattern appears under control of a self-regulatory Turing system. Previous studies established the requirement of WNT and BMP signaling for both early limb bud and digit-interdigit morphogenesis, but the molecular changes underlying the transition from early limb bud signaling to the digit-interdigit patterning system remained unknown. Here, we use small molecule inhibitors to rapidly but transiently block WNT signaling to identify the early transcriptional targets that are altered during disruption and recovery of limb bud and digit development. Together, this study highlights the overarching role of WNT signaling in controlling early limb bud outgrowth and patterning, and establishment of the periodic digit-interdigit pattern. Finally, the transient WNT signaling disruption approach reveals the plasticity and robustness of these self-organizing limb bud and digit patterning systems.
dev204606.pdf
Main Document
http://purl.org/coar/version/c_ab4af688f83e57aa
openaccess
CC BY
3.81 MB
Adobe PDF
c64bb80f2b9f9fd626bdf4cc4c42d581