Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Sparse decomposition over multi-component redundant dictionaries
 
conference paper

Sparse decomposition over multi-component redundant dictionaries

Granai, L.  
•
Vandergheynst, P.  
2004
Multimedia Signal Processing (MMSP04), Workshop on

In many applications - such as compression, de-noising and source separation - a good and efficient signal representation is characterized by sparsity. This means that many coefficients are close to zero, while only few ones have a non-negligible amplitude. On the other hand, real-world signals - such as audio or natural images - clearly present peculiar structures. In this paper we introduce a global optimization framework that aims at respecting the sparsity criterion while decomposing a signal over an overcomplete, multi-component dictionary. We adopt a probabilistic analysis which can lead to consider the signal internal structure. As an example that fits this framework, we propose the Weighted Basis Pursuit algorithm, based on the solution of a convex, non-quadratic problem. Results show that this method can provide sparse signal representations and sparse m-terms approximations. Moreover, Weighted Basis Pursuit provides a faster convergence compared to Basis Pursuit.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Granai2004_864.pdf

Access type

openaccess

Size

107.1 KB

Format

Adobe PDF

Checksum (MD5)

5895a359f435beb8c47dd8cc4dd2e23f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés