A mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms
We describe a hybrid Lyapunov solver based on the matrix sign function, where the intensive parts of the computation are accelerated using a graphics processor (GPU) while executing the remaining operations on a general-purpose multi-core processor (CPU). The initial stage of the iteration operates in single-precision arithmetic, returning a low-rank factor of an approximate solution. As the main computation in this stage consists of explicit matrix inversions, we propose a hybrid implementation of Gauß-Jordan elimination using look-ahead to overlap computations on GPU and CPU. To improve the approximate solution, we introduce an iterative refinement procedure that allows to cheaply recover full double-precision accuracy. In contrast to earlier approaches to iterative refinement for Lyapunov equations, this approach retains the low-rank factorization structure of the approximate solution. The combination of the two stages results in a mixed-precision algorithm, that exploits the capabilities of both general-purpose CPUs and many-core GPUs and overlaps critical computations. Numerical experiments using real-world data and a platform equipped with two Intel Xeon QuadCore processors and an Nvidia Tesla C1060 show a significant efficiency gain of the hybrid method compared to a classical CPU implementation. © 2011.
2009-40.pdf
Preprint
openaccess
279.42 KB
Adobe PDF
b2b71a5d233c8282ed22376b13e62dea