Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Accurate thermal conductivities from optimally short molecular dynamics simulations
 
research article

Accurate thermal conductivities from optimally short molecular dynamics simulations

Ercole, Loris
•
Marcolongo, Aris  
•
Baroni, Stefano
2017
Scientific Reports

The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to compute these coefficients from optimally short molecular dynamics simulations, based on the Green-Kubo theory of linear response and the cepstral analysis of time series. Information from the full sample power spectrum of the relevant current for a single and relatively short trajectory is leveraged to evaluate and optimally reduce the noise affecting its zero-frequency value, whose expectation is proportional to the corresponding conductivity. Our method is unbiased and consistent, in that both the resulting bias and statistical error can be made arbitrarily small in the long-time limit. A simple data-analysis protocol is proposed and validated with the calculation of thermal conductivities in the paradigmatic cases of elemental and molecular fluids (liquid Ar and H2O) and of crystalline and glassy solids (MgO and a-SiO2). We find that simulation times of one to a few hundred picoseconds are sufficient in these systems to achieve an accuracy of the order of 10% on the estimated thermal conductivities.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

articles-s41598-017-15843-2.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.05 MB

Format

Adobe PDF

Checksum (MD5)

b54575d76dbe21b90563ae9c84f06ebb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés