Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. DAMP HEAT STABILITY OF TRANSPARENT CONDUCTIVE ZINC OXIDES: ROLE OF ENCAPSULANTS AND PROTECTIVE LAYERS
 
conference paper

DAMP HEAT STABILITY OF TRANSPARENT CONDUCTIVE ZINC OXIDES: ROLE OF ENCAPSULANTS AND PROTECTIVE LAYERS

Pelisset, Ségolène
•
Perret-Aebi, L.-E.
•
Théron, Ricardo  
Show more
2010
Proceedings of the 25th EU-PVSEC conference

The mechanisms and environmental influences that cause photovoltaic modules performance degradation are poorly understood, but it is well known that water vapour is deeply implicated in the degradation process. Indeed, some layers and interfaces of thin film modules can be moisture sensitive and depending on the processing conditions, they degrade after exposure to damp heat conditions (85°C, 85% relative humidity) [1]. Transparent conductive oxides (TCO), as used in CIGS or thin silicon film cells play a particular role linked to reliability issues. We showed recently that low-pressure chemical vapour deposition zinc oxide (LPCVD ZnO) can withstand damp heat test even without encapsulant providing doping of the ZnO is high enough, though this is unfavourable for free carrier absorption (reduction of spectral response in the infrared part) [2]. Reduction of doping leads to improved optical properties but needs therefore an optimized encapsulation strategy to avoid the deterioration of the TCO conductivity. In previous work, the degradation of LPCVD ZnO used in thin-film silicon solar cells was investigated [3]. It was shown that the decrease of the ZnO conductivity was essentially due to the humidity increasing inside the encapsulant. However other effects take part in the degradation process and remained yet unexplained. In this paper we will report on several other possible sources of degradation, which have been identified. In order to demonstrate and quantify these effects, we used various encapsulants, but without back protection (foil or glass), and we exposed the samples to different type of atmospheres. The resistivity of the ZnO was monitored using an inductive contactless and a four points probe methods. Finally, schemes to perform highly reliable laminates when using lightly doped ZnO are proposed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

preprint_586.pdf

Access type

openaccess

Size

290.59 KB

Format

Adobe PDF

Checksum (MD5)

92cd2ead785f2e68e4605e50c7e238b0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés