Advanced optical characterization of micro solid immersion lens
We report on the advanced optical characterizations of microfabricated solid immersion lenses with 2-mu m diameter, operating at lambda = 642 nm. The main feature, the spot size reduction, has been investigated by applying a focused Gaussian beam of NA = 0.9. Particular illuminating beams, e. g., Bessel-Gauss beams of the zeroth and the first order, a doughnut-shape beam and its decompositions, i.e. two-half-lobes beams, have also been used to influence the shape of the immersed focal spot. Detailed optical characterizations have been conducted by measuring the amplitude and phase distributions with a high-resolution interference microscope (HRIM) in volume around the focal spot. The immersion effect of the SiO2 solid immersion lens leads to a spot-size reduction of approximately 1.5 which agrees well with theory. Particularly shaped incident beams exhibit a comparable size reduction of the immersed spots. Such structured focal spots are of significant interest in optical trapping, lithography, and optical data storage systems.
SPI84300E.pdf
openaccess
3.61 MB
Adobe PDF
902ca4d5fafcebad9b97a7501d8e12c3