Rigorous System Design
The monograph advocates rigorous system design as a coherent and accountable model-based process leading from requirements to correct implementations. It presents the current state of the art in system design, discusses its limitations, and identifies possible avenues for overcoming them. A rigorous system design flow is defined as a formal accountable and iterative process composed of steps, and based on four principles: (1) separation of concerns; (2) component-based construction; (3) semantic coherency; and (4) correctness-by-construction. The combined application of these principles allows the definition of a methodology clearly identifying where human intervention and ingenuity are needed to resolve design choices, as well as activities that can be supported by tools to automate tedious and error-prone tasks. An implementable system model is progressively derived by source-to-source automated transformations in a single host component-based language rooted in well-defined semantics. Using a single modeling language throughout the design flow enforces semantic coherency. Correct-by-construction techniques allow well-known limitations of a posteriori verification to be overcome and ensure accountability. It is possible to explain, at each design step, which among the requirements are satisfied and which may not be satisfied. The presented view for rigorous system design has been amply implemented in the BIP (Behavior, Interaction, Priority) component framework and substantiated by numerous experimental results showing both its relevance and feasibility. The monograph concludes with a discussion advocating a system-centric vision for computing, identifying possible links with other disciplines, and emphasizing centrality of system design.
EDA-Sifakis-Vol6-EDA-034.pdf
Publisher's version
openaccess
2.13 MB
Adobe PDF
ea9619a67bd5e534fdeea3655c077d85