Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Short and intermediate range order in amorphous GeSe2
 
research article

Short and intermediate range order in amorphous GeSe2

Massobrio, C.
•
Pasquarello, Alfredo  
2008
Physical Review B

By using first-principle molecular dynamics within density functional theory, we study the structural properties of amorphous GeSe2 at a temperature T of 300 K. For each property, a statistical average is obtained from six independent partial averages taken on temporal trajectories, each one lasting 12 ps. Each trajectory stems from an initial configuration of the liquid phase at T=1100 K and is generated by extensive annealing at T=300 K. Overall, our level of theory provides a picture of this prototypical disordered network-forming glass that is quantitatively consistent with neutron diffraction data. Very satisfactory agreement with experiments is obtained for the pair correlation functions g(GeSe)(r) and g(SeSe)(r) in terms of peak intensities and positions. This holds true also for the amount of Se-Se homopolar bonds and the Ge-Se and Se-Se coordination numbers. Conversely, the g(GeGe)(r) pair correlation function is much less structured around the main peak position and the concentration of Ge-Ge homopolar bonds is lower than in the experiment. The network organizes itself through the predominant presence of GeSe4 tetrahedra. However, other coordinations occur in non-negligible proportions for both Ge and Se. Total and partial structure factors reproduce very well the experimental patterns for wave numbers k larger than 2 A(-1). For smaller k values, the largest difference between theory and experiment is exhibited by the S-GeGe(k) structure factor, showing a FSDP of lower intensity in the simulation. In agreement with experimental results, a sizeable feature is found at the FSDP location in the Bhatia-Thornton concentration-concentration structure factor S-CC(k).

  • Details
  • Metrics
Type
research article
DOI
10.1103/PhysRevB.77.144207
Web of Science ID

WOS:000255457300031

Author(s)
Massobrio, C.
Pasquarello, Alfredo  
Date Issued

2008

Published in
Physical Review B
Volume

77

Issue

14

Article Number

144207

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CSEA  
Available on Infoscience
October 8, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/43542
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés