Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%
The past several years have witnessed the rapid emergence of a class of solar cells based on mixed organic-inorganic halide perovskites. Today's state-of-the-art perovskite solar cells (PSCs) employ various methods to enhance nucleation and improve the smoothness of the perovskite films formed via solution processing. However, the lack of precise control over the crystallization process creates a risk of forming unwanted defects, for example, pinholes and grain boundaries. Here, we introduce an approach to prepare perovskite films of high electronic quality by using poly(methyl methacrylate) (PMMA) as a template to control nucleation and crystal growth. We obtain shiny smooth perovskite films of excellent electronic quality, as manifested by a remarkably long photoluminescence lifetime. We realize stable PSCs with excellent reproducibility showing a power conversion efficiency (PCE) of up to 21.6% and a certified PCE of 21.02% under standard AM 1.5G reporting conditions.
manuscript_Nature energy_0405.pdf
Preprint
openaccess
9.35 MB
Adobe PDF
688da6d3b13e3df5d84d35b304dee3b4