Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Bacterial traps and advances in nanobiotechnology for atomic force microscopy
 
doctoral thesis

Bacterial traps and advances in nanobiotechnology for atomic force microscopy

Peric, Oliver  
2018

The atomic force microscope (AFM) allows the analysis of living microorganisms in physiological conditions on the nanometer scale. The observation of bacteria in physiological aqueous medium necessitates a robust immobilization of the bacterium to the surface, in order to withstand the lateral forces exerted by the AFM cantilever tip during scanning. Different immobilization techniques for AFM analysis of bacteria in aqueous media have been developed hitherto, however the immobilization techniques were dependent on the bacterial species and/or the aqueous imaging medium.

We propose a robust bacterial immobilization method allowing bacterial species and medium independent analysis. We demonstrate the immobilization and AFM analysis of different bacterial species such as gram-positive and -negative, motile and non-motile, and rod-shaped, ovococcal, and crescent bacteria. The developed bacterial traps were used together with Escherichia coli, Bacillus subtilis, Caulobacter crescentus, Streptococcus pneumoniae, and Acidiphilium cryptum bacteria in their corresponding physiological aqueous medium.

The developed microfluidic device allows simultaneous fluorescence and atomic force microscopy of bacteria. Moreover, we developed two different cleanroom microfabrication techniques for the bacterial traps. We thus fabricated nanotailored bacterial traps, allowing the immobilization of rod-shaped bacteria along their longitudinal axis as well as by the bacterial poles.

Furthermore, we discuss the nanomechanical analysis of suspended silicon nanowires and hydrogels using the AFM. In the final part of the thesis, we explain the microfabrication method for AFM cantilevers with a low quality factor and elucidate hard tip integration into the developed multilayer AFM cantilevers.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH8003.pdf

Access type

openaccess

Size

26.5 MB

Format

Adobe PDF

Checksum (MD5)

c516310a4232fd58eb09575f786d0891

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés