Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Predictability, efference copies, and non-retinotopic motion
 
conference poster not in proceedings

Predictability, efference copies, and non-retinotopic motion

Lauffs, Marc M
•
Öğmen, Haluk
•
Herzog, Michael H
2015
12th Lemanic Neuroscience Annual Meeting (LNAM'15)

Perception is usually non-retinotopic. For example, a reflector on the wheel of a bicycle is perceived to rotate on a circular orbit, while its retinotopic motion is cycloidal. To investigate non-retinotopic motion perception, we used the Ternus-Pikler display. Two disks are repeatedly flashed on a computer screen. A dot moves linearly up-down in the left disk and left-right in the right disk (retinotopic percept). If a third disk is added alternatingly to the left and right, the three disks form a group moving predictably back and forth horizontally. The dot in the central disk now appears to move on a circular orbit (non-retinotopic percept), because the brain subtracts the horizontal group motion from the up-down and left-right motion. Here, we show that predictability is not necessary to compute non-retinotopic motion. In experiment 1, the three disks moved randomly in any direction. In experiment 2, we additionally varied the shape and contrast polarity of the stimuli from frame to frame. In both cases, strong non-retinotopic rotation was perceived. Hence, the visual system can flexibly solve the non-retinotopic motion correspondence problem, even when the retinotopic reference motion is unpredictable and no efference copy-like signals can be used.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Lauffs et al 2015 LNAM Poster - Predictability efference copies and non-retinotopic motion.pdf

Type

N/a

Access type

restricted

License Condition

copyright

Size

163.82 KB

Format

Adobe PDF

Checksum (MD5)

36da13a0f9f627586594a196b0f22df5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés